首页 > 试驾评测 > 正文

欧拉公式怎么写

2024-05-07 07:16:47 | 玩车网

最近经常有小伙伴私信询问欧拉公式怎么写相关的问题,今天,玩车网小编整理了以下内容,希望可以对大家有所帮助。

本文目录一览:

欧拉公式怎么写

欧拉公式怎么写

欧拉公式有4条

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复数

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”.

当θ=π时,成为e^iπ+1=0 它把数学中最重要的e、i、π、1、0联系起来了.

(3)三角形

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

(4)多面体

设v为顶点数,e为棱数,f是面数,则

v-e+f=2-2p

p为亏格,2-2p为欧拉示性数,例如

p=0 的多面体叫第零类多面体

p=1 的多面体叫第一类多面体

欧拉公式怎么写

欧拉公式推导

eix= 1 + i x - x2/2! - i x3/3! + x4/4! + i x5/5! + …

= (1 - x2/2! + x4/4! + …) + i (x - x3/3! + x5/5! + …)

又因为:

cos x = 1 - x2/2! + x4/4! + …

sin x = x - x3/3! + x5/5! + …

所以

eix = cos x + i sin x玩车网

欧拉公式怎么写

欧拉公式的证明

用拓朴学方法证明欧拉公式 尝欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假 设F,E和V分别表示面,棱(或边),角(或顶)的个数,那么 F-E+V=2。试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。 证明 如图15(图是立方体,但证明是一般的,是“拓朴”的): (1)把多面体(图中①)看成表面是薄橡皮的中空立体。 (2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。 (3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。 (4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。 (5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。 (6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。 (7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。 (8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。 即F′-E′+V′=1 成立,于是欧拉公式: F-E+V=2 得证。

以上就是玩车网小编整理的内容,想要了解更多相关资讯内容敬请关注玩车网。

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“欧拉公式怎么写”相关推荐